Real-Time Simulation of Static VAR Compensator and Static Synchronous Compensator

Author:

Abstract

In recent years, deregulation, open access, and co-generation in electrical power system are creating transmission voltage sags, swells, forced outages, and frequently followed by black-outs, congestion scenario, and many such problems. Reactive power limit is one of the major causes of voltage instability in the power system, and improving the system's reactive power handling capacity via Flexible AC transmission System (FACTS) devices is one of the remedies for prevention of voltage instability. The typical representatives of parallel FACTS devices for its avoidance are Static Synchronous Compensator (STATCOM) and Static VAR Compensator (SVC). Real-Time Simulator facilitates a physically large and spatially diverse or distributed power system to be accurately simulated in laboratory, and physical devices, like controllers or protection equipment can be tested in real time, even with introduction of faults, overloads, loss of generation condition, and with many more conditions for stability analysis purpose. This paper presents comparison of power flow parameter and the performance characteristic of the controllers on Real-Time Simulator OPAL-RT-OP4510 with SVC, and STATCOM. The waveforms of voltage, current, active and reactive power during the Real-Time execution are taken from the simulation environment to the outside world, using input/output devices, and seen on Digital Storage Oscilloscope (DSO). The validation is done on multi-machine-9-bus system. The results of Real-Time Simulation during LLLG fault indicate that STATCOM supplies reactive power independent of line voltage, whereas SVC behaves as constant susceptance when the reactive power required by the system is above its rated capacity. The power flow parameters with both the controllers are comparable during steady state operation.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating Ferranti Effect and Enhancing Transmission Line Efficiency through Shunt Reactor Placement in Remote Grids;2023 24th International Middle East Power System Conference (MEPCON);2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3