Opinion Mining using Machine Learning Techniques

Author:

Godara *Nirmal, ,Kumar Sanjeev,

Abstract

Sentiment analysis or opinion mining has gained much attention in recent years.With the constantly evolving social networks and internet marketing sites, reviews and blogs have been obtained among them, they act as an significant source for future analysis and better decision making. These reviews are naturally unstructured and thus require pre processing and further classification to gain the significant information for future use. These reviews and blogs can be of different types such as positive, negative and neutral . Supervised machine learning techniquess help to classify these reviews. In this paper five machine learning algorithms (K-Nearest Neighbors (KNN), Decision Tree, Artificial neural networks (ANNs), Naïve bayes and Support Vector Machine (SVM))are used for classification of sentiments. These algorithms are analyzed usingTwitter dataset. Performance analysis of these algorithms are done by using various performance measures such as Accuracy, precision, recall and F-measure. The evaluation of these techniques on Twitter datasetshowed predictive ability of Machine Learning in opinion mining.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Different Machine Learning Approaches for Sentiment Analysis;Communication and Intelligent Systems;2023

2. A Review of Text Analytics Using Machine Learning;Handbook of Research on Opinion Mining and Text Analytics on Literary Works and Social Media;2022-02-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3