Abstract
Advancements in machine learning have minimized the gap of variation between human and algorithm composed music. This paper realizes a music generation system using evolutionary algorithms. The music generation is fully automated with no requirement of human intervention. Multiple music sample from a single dataset were used to the neural network. Software has been constructed to exhibit the results over various datasets. The proposed model is based on recurrent neural network with the input layer represents a measure at time T, and the output layer represents the measure at time T+1. The approach results in generation of new music composition by the system. Composition rules are used as constraints to evaluate the melodies generated by the novel neural network. Thus, the results are expected to evolve to satisfy the defined constraints. The proposed system of work would be capable of music generation without human intervention.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Computer Science Applications,General Engineering,Environmental Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献