Predicting the Presence of Poly Cystic Ovarian Syndrome using Classification Techniques

Author:

Abstract

PCOS is an endocrine disorder which occurs due to hormone imbalance. PCOS may leads to infertility, diabetes mellitus and cardiovascular diseases. It may be identified by physical appearance, ultrasound scanning and clinical trials. The PCOS ovary can be identified as the follicles which are arranged peripherally and measuring 2-9mm of size. The dataset used in this paper consists of 119 samples with 17 features which represents the physical appearance and psychological characteristics such as stress, exercising methods, eating habits, etc. The classification algorithms can be applied on these data to predict the present of PCOS. The aim of the paper is to compare the accuracy of the classification model and find the algorithm which best suites for the dataset in predicting the occurrence of PCOS

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Polycystic Ovary Syndrome Based on Correlation Weight Using Machine Learning;Advances in Medical Technologies and Clinical Practice;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3