Abstract
The number of major road accidents that occur per day is on a rise and most of them are attributed to being the driver’s fault. According to the survey done in 2015, drivers are held responsible for approximately 78% of the accidents. To minimize the occurrence of these incidents a monitoring system that alerts the driver when he succumbs to sleep is proposed. This algorithm processes live video feed focused on the driver’s face and tracks his eye and mouth movements to detect eye closure and yawning rates. An alarm sounds if the driver is drowsy or already asleep. Haar-cascade classifiers run parallelly on the extracted facial features to detect eye closure and yawning.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Management of Technology and Innovation,General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献