Abstract
Text classification is a vital process due to the large volume of electronic articles. One of the drawbacks of text classification is the high dimensionality of feature space. Scholars developed several algorithms to choose relevant features from article text such as Chi-square (x2 ), Information Gain (IG), and Correlation (CFS). These algorithms have been investigated widely for English text, while studies for Arabic text are still limited. In this paper, we investigated four well-known algorithms: Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbors (KNN), and Decision Tree against benchmark Arabic textual datasets, called Saudi Press Agency (SPA) to evaluate the impact of feature selection methods. Using the WEKA tool, we have experimented the application of the four mentioned classification algorithms with and without feature selection algorithms. The results provided clear evidence that the three feature selection methods often improves classification accuracy by eliminating irrelevant features.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Management of Technology and Innovation,General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Arabic Text Classification: A Literature Review;2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA);2021-11
2. ACRIPPER: A New Associative Classification Based on RIPPER Algorithm;Journal of Information & Knowledge Management;2021-03