Balancing the Performance of Asphalt Binder Modified by Tire Rubber and Used Motor Oil

Author:

Abstract

The crumb rubber modifier (CRM) particles release polymeric fractions in the matrix of the asphalt binder, which increase the asphalt binder’s fatigue and rutting resistance. The used motor oil (UMO) compensates the asphalt binder for the low-molecular-weight components lost during the aging processes. Moreover, UMO could increase the asphalt binder’s fluidity and softness. Therefore, modification of the asphalt binder by CRM in combination with UMO could enhance the asphalt binder’s performance. In this paper, the asphalt binder was modified by CRM. Then, the UMO was added to the crumb rubber modified asphalt (CRMA). The neat asphalt, CRMA, and UMO–CRMA binders’ resistance to rutting and fatigue cracking was evaluated. Temperature sweep test was used to evaluate the neat and modified asphalt binders’ resistance to rutting and fatigue cracking by measuring |G*|/sinδ and |G*|.sinδ parameters, respectively. Linear amplitude sweep (LAS) test was used to analyze the neat and modified asphalt binders’ resistance to fatigue cracking by measuring the number of load repetitions to failure (Nf ). It was found that using CRM and UMO enhanced the asphalt binder’s resistance to rutting and fatigue cracking. Therefore, UMO succeeded as a rejuvenator to balance the CRMA binder’s performance. This had occurred by creating a balance between the enhanced properties at high, intermediate, and low temperatures. Interaction temperature plays a dominant role in enhancing the asphalt binder’s performance: the enhancement in rutting and fatigue cracking parameters reached the highest values for CRMA or UMO–CRMA samples interacted at 190°C interaction temperature. At 220°C interaction temperature, these enhancements had decreased due to the devulcanization and depolymerization processes of the polymeric components released in the asphalt binder’s matrix.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3