Heart Disease Prediction using Machine Learning Techniques

Author:

Abstract

Nowadays, heart disease has become a major disease among the people irrespective of the age. We are seeing this even in children dying due to the heart disease. If we can predict this even before they die, there may be huge chances of surviving. Everybody has various qualities of beat rate (pulse rate) and circulatory strain (blood pressure). We are living in a period of data. Due to the rise in the technology, the amount of data that is generated is increasing daily. Some terabytes of data are being produced and stored. For example, the huge amount of data about the patients is produced in the hospitals such as chest pain, heart rate, blood pressure, pulse rate etc. If we can get this data and apply some machine learning techniques, we can reduce the probability of people dying. In this paper we have done survey using different classification and grouping strategies, for example, KNN, Decision tree classifier, Gaussian Naïve Bayes, Support vector machine, Linear regression, Logistic regression, Random forest classifier, Random forest regression, linear descriptive analysis. We have taken the 14 attributes that are present in the dataset as an input and applying on the dataset which is taken from the UCI repository to develop and accurate model of predicting the heart disease contains colossal (huge) therapeutic (medical) information. In the proposed research, the exhibition of the conclusion model is acquired by using utilizing classification strategies. In this paper proposed an accuracy model to predict whether a person has coronary disease or not. This is implemented by comparing the accuracies of different machine-learning strategies such as KNN, Decision tree classifier, Gaussian Naïve Bayes, SVM, Logistic regression, Random forest classifier, Linear regression, Random forest regression, linear descriptive analysis

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detect the Cardiovascular Disease's in Initial Phase using a Range of Feature Selection Techniques of ML;International Research Journal of Multidisciplinary Technovation;2024-05-14

2. Probability of Heart Disease using various Machine Learning Algorithms;2023 International Conference on Advanced Computing Technologies and Applications (ICACTA);2023-10-06

3. Machine Learning-Based Model to Predict Heart Disease in Early Stage Employing Different Feature Selection Techniques;BioMed Research International;2023-05-02

4. Early Prediction of Cardiac Disease using Expert Systems;International Journal of Recent Technology and Engineering (IJRTE);2022-05-30

5. Heart Disease Prediction with Machine Learning Approaches;Lecture Notes in Electrical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3