A Feasibility Solution of a Synchronous Generator for Optimisation of the System Power Stability using an Integrated Development Environment of Visual Basic Excel

Author:

Al-Mahdawi Emad,

Abstract

Power systems are considered highly non-linear because the environment in which they operate keep changing and hence require iterative mathematical techniques to analyse them. Such changes have a resultant effect on the system`s stability. Fluctuations in parameters are experienced in loads across the networks of the system, generator`s outputs, network topology and other operating parameters. Practically, there is no analytical solution exists for solving the problem of stability. On the other hand, there are techniques available to obtain an acceptable approximate solution of such a problem, known as digital simulation. Runge-kutta method is one of these techniques which has been used broadly as it calculates every step in a sequence of sub-steps. The method relies on a complex mathematical modelling of the synchronous generator with the help of Park-Gorev`s transformation, for the sake of simplicity and intuitiveness the method is used to analyse and study the complex equations of the three-phase synchronous generator. Generally, the system is said to be stable if the opposing forces within it are balanced and at a perfect equilibrium. The aims of this research are to establish the effects of synchronous generator`s design and transient conditions upon power system stability with the help of Embedded Microsoft Excel Sheet based on Power System Stability Analysis (EMES-PSS), using the Runge-Kutta integration method. The study has proved that EMES-PSS can find the limits of Salient and Non-Salient machines stability when changing their essential parameters. The optimisation solutions of the power system stability problem can be achieved by using basic computational resources. The software can also be used on a number of modern tablets e.g., Apple`s tablets.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of installing renewable energy sources on a small-scale power network in the Caribbean;IOP Conference Series: Earth and Environmental Science;2021-06-01

2. Oman rural grid extension employing renewable energy technology;IOP Conference Series: Earth and Environmental Science;2021-06-01

3. Experimental study of porcelain and toughened glass suspension insulators under desert contamination;IOP Conference Series: Earth and Environmental Science;2021-06-01

4. An investigation on the power network stability of Southern Baghdad;2ND INTERNATIONAL CONFERENCE ON ENGINEERING & SCIENCE;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3