Author:
Sentamilselvan K., ,Aneri D.,Athithiya A. C.,Kumar P. Kani, , ,
Abstract
Nowadays people share their views and opinions in twitter and other social media platforms, the way of recognizing sentiments and speculation in tweets is Twitter Sentiment Analysis. Determining the contradiction or sentiment of the tweets and then listing them into positive, negative and neutral tweets is the main classifying step in this process. The issue related to sentiment analysis is the naming of the correct congruous sentiment classifier algorithm to list the tweets. The foundation classifier techniques like Logistic regression, Naive Bayes classifier, Random Forest and SVMs are normally used. In this paper, the Naïve Bayes classifier and Logistic Regression has been used to perform sentiment analysis and classify based on the better accuracy of catagorizing Technique. The outcome shows that Naive Bayes classifier works better for this approach. Data pre-processing and feature extraction is realized as a portion of task.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Computer Science Applications,General Engineering,Environmental Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献