An Intelligent Feature Selection with Optimal Neural Network Based Network Intrusion Detection System for Cloud Environment

Author:

Thirumalairaj A., ,Jeyakarthic M.,

Abstract

At present times, Cloud Computing (CC) becomes more familiar in several domains such as education, media, industries, government, and so on. On the other hand, uploading sensitive data to public cloud storage services involves diverse security issues, specifically integrity, availability and confidentiality to organizations/companies. Besides, the open and distributed (decentralized) structure of the cloud is highly prone to cyber attackers and intruders. Therefore, it is needed to design an intrusion detection system (IDS) for cloud environment to achieve high detection rate with low false alarm rate. The proposed model involves a binary grasshopper optimization algorithm with mutation (BGOA-M) as a feature selector to choose the optimal features. For classification, improved particle swarm optimization (IPSO) based NN model, called IPSO-NN has been derived. The significance of the IPSO-NN model is assessed using a set of two benchmark IDS dataset. The experimental results stated that the IPSO-NN model has achieved maximum accuracy values of 99.36% and 97.80% on the applied NSL-KDD 2015 and CICIDS 2017 dataset. The obtained experimental outcome clearly pointed out the extraordinary detection performance of the IPSO-NN model over the compared methods.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid one‐dimensional residual autoencoder and ensemble of gradient boosting for cloud IDS;Concurrency and Computation: Practice and Experience;2024-04-08

2. Network Intrusion Classifier with Optimized Clustering Algorithm for the Efficient Classification;2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV);2024-03-11

3. Intrusion Detection on AWS Cloud through Hybrid Deep Learning Algorithm;Electronics;2023-03-16

4. Hybrid machine learning approach based intrusion detection in cloud: A metaheuristic assisted model;Multiagent and Grid Systems;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3