Abstract
Biometric based authentication systems use particular person characteristics which might be based on either behavior like voice, signature etc. or body structure like face, iris, palm print, fingerprint, etc. The performance of any unimodal biometric arrangement is depending on elements like surroundings, atmosphere, and sensor precision. Also, there are numerous trait unique demanding situations which include pose, expression, growing old and so forth for face reputation, occlusion and acquisition related problems for iris and terrible high-quality and social popularity related troubles for fingerprint. Hence, fusion of more than one biometric samples, traits or algorithms to achieve quality performance is another way to reap the better overall performance. In current scenario many researchers concentrating on Multimodal Biometrics with new fusion techniques ideas. We propose a new method of feature level fusion which uses Modified Adaptive Bilinear Interpolation (MABI) method to increase the resolution of data sample, which gives better features for fusion which gives more accurate results. In this work, experiment is done on AT&T face Cambridge University Computer Laboratory and MCYT signature Biometric Recognition Group datasets with combination of both unimodal and multimodal traits. K Nearest Neighbor (KNN) and Ensemble methods are used for classification. The proposed biometric system can be used in biometric surveillance, biometric screening for secured places, forensic applications etc.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Computer Science Applications,General Engineering,Environmental Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献