Impact of Substitution of Silica Nanoparticles on Compressive Strength of Concrete

Author:

Singh Dr. Anil KumarORCID, ,Chauhan ChaitanyaORCID,

Abstract

In present work, we studied the effect of substitution of silica nanoparticles (SNPs), by replacement of cement on ultrasound pulse velocity and compressive strength of concrete specimens. We also obtained correlation between ultrasound pulse velocity (UPV) and the compressive strength. The mean particle size of silica nano-particle was 20nm. The quality of concrete specimen was assessed by measuring ultrasound pulse velocity (UPV) in m/s and compressive strength (N/mm2). The average value of UPV on 7th day of curing turned out to become 3200 ± 36, 3215 ± 42, 3290 ± 41, 3349 ± 24, 3450±17 and 3456 ± 12 for 0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5% content of SNPs in the specimens respectively. Similarly, the average value of UPV on 28th day was 3540 ± 36, 3580 ± 38, 3696 ± 42, 3820 ± 39, 4160 ± 40, 4163 ± 41 for same amount of substitution of SNPs respectively. It had been observed that the UPV was higher in the specimens replaced by silica nano-particles (by weight of cement) and it achieved maximum strength at nearly 2% (that is in between 2.0-2.5%). The average compressive strength on 7th day was 25, 25, 27.6, 30, 32.4 and 32 N/mm2, but, on 28th day the it increased up to 38, 38.5, 40, 42, 48.5 and 48.8 N/mm2 for the same content of silica nanoparticles ( 0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) respectively. As UPV increased so did the compressive strength. We observed strong correlation (correlation coefficient 0.997) between USV and compressive strength and variance (R2 = 0.87), which meant 87% of variation of compressive strength could be explained by variation of USV for the specimens (which acquired its compressive strength) on 28th day. Compressive strength and USV increased due to hydration reaction leading to C-S-H (Calcium-Silicate-hydrate) gel formation which filled the pores in the concrete matrix. The compressive strength of concrete significantly increased with content of silica nano-particles within the selected range of content (1.5-2.5%), but there is limitation probably due to agglomeration of nanoparticles, which destroyed the salient features nano-particles.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3