Visual Fall Detection Analysis Through Computer Vision and Deep Learning – Technology Proposition

Author:

,Dr. C Kiranmai ORCID,B Srivalli ORCID, ,CH Komali ORCID, ,G Apurva ORCID, ,Yesshaswi B SnehaORCID,

Abstract

Advances in modern medicine has increased humans’ life span. Orderly adults face mobility problems while aging. They feel less fit to continue any activity for short intervals too. This is due to declining fitness levels or muscle strength, diminished dexterity, and loss of balance. These symptoms lead to the fall of the individual and sometimes fatal too, if immediately not attended to. It’s an alarming issue for people staying alone. They may pose significant health risks and need immediate assistance. Fall detection technologies are majorly categorised as wearable sensors and ambient sensors. Fall detection wearable devices like pendant necklaces, watches and wristband devices, and clip-on medical alerts use accelerometers to detect rapid downward movements that can indicate a fall. They often also include manual alert buttons, for an increased accuracy. This requires technology comfort and awareness for usage. Ambient home sensors use video cameras to monitor the user’s movement and detect falls. When the fall is transmitted to a monitoring center, a representative typically will call the user to check on them before notifying contacts or calling for emergency services, but this can depend on the user’s preferences and risk factors. In this paper we propose a technology, using security cameras to record videos and create a video-based fall detection system. The system uses computer vision and deep learning algorithms to accurately recognize fall-related movements and distinguish them from regular activities. This system can be integrated to prompt alerts to emergency contacts, thus assisting in providing immediate aid to individuals who have experienced a fall. For higher accuracy, multiple-angle videos and multi-person tracking is integrated in this system to estimate the intensity of the fall for immediate attention. Thus, this fall detection system can contribute to the safety, well-being and independence of individuals at risk of falling.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3