Stress Detection Methodology based on Social Media Network: A Proposed Design

Author:

Abstract

Mental disorders can be recognized by how a person behaves, feels, perceives, or thinks over a period of a lifetime. Nowadays, a large number of people are feeling stressed with the rapid pace of life. Stress and depression may lead to mental disorders. Work pressure, working environment, people we interact, schedule of the day, food habits, etc. are some of the major reasons behind building stress among the people. Thus, stress can be detected through some conventional medical symptoms such as headache, rapid heartbeats, feeling low energy, chest pain, frequent colds, infections, etc. The stress also may reflect in normal behavior while carrying out day-to-day activities. Individuals may share their day-to-day activities and interact with friends on social media. Thus, it may be possible to detect stress through social network data. There are many ways to detect stress levels. Some of the instruments are used to detect stress while there is a medical test to know the stress level. Also, there are apps that analyze the behavior of the person to detect stress. Many researchers had tried to use machine learning techniques including the use of various algorithms such as Decision Tree, Naïve Bayes, Random Forest, etc. which gives a lower accuracy of 70% on average. In this paper, we are using a closeness of stress levels with social media data shared by many users. In our proposed system design, Facebook posts are being accessed using a token. Further, we recommend the use of machine learning algorithms such as Conventional Neural Network (CNN) to extract Facebook posts, Transductive Support Vector Machine (TSVM) to classify posts and K-Nearest Neighbors (KNN) to recommend nearby hospitals. With the help of these algorithms, we predict the stress level of the person as positive, negative. Thus, we are expecting more accuracy to detect the stress along with the preventive recommendation. We have proposed a methodology to detect stress because severe stress may lead to self-harming activities and also it may affect the lives of people around us. Thus, stress detection has become extremely important and we are expecting that our proposed model may detect it with more accuracy.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Analysis of Mental Stress using Machine Learning Techniques;2023 8th International Conference on Communication and Electronics Systems (ICCES);2023-06-01

2. Machine Learning Framework for Stress Identification of Humans;Lecture Notes in Networks and Systems;2023

3. Stress Detection Using Physiological Signals Based On Machine Learning;2022 International Conference on Computational Science and Computational Intelligence (CSCI);2022-12

4. Prediction of Mental Stress Level Based on Machine Learning;Algorithms for Intelligent Systems;2022

5. Measurement and Prediction of Mental Stress Through Innovative Equipment in Agriculture;Innovation, Technology, and Knowledge Management;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3