EAgeBioS: Enhanced Biometric System to handle the Effects of Template Aging

Author:

Abstract

Biometric Systems are well-known security systems that can be used anywhere for authentication, authorization or any kind of security verifications. In biometric systems, the samples are trained first and then it can be used for testing in long runs. Many recent researches have shown that a biometric system may fail or get compromised because of the aging of the biometric templates. The fact that temporal duration affects the performance of the biometric system has shattered the belief that iris does not change over lifetime. This is also possible in the case of iris. So, the main focus of this work is to analyze the effect of aging and also to propose a new system that can deal with template aging. We have proposed a new iris recognition system with an image enhancement mechanism and different feature extraction mechanisms. In this work, three different features are extracted, which are then fused to be used as one. The full system is trained on a dataset of 2500 samples for the year 2008 and testing is done in three different phases (i) No-Lapse, (ii) 1-Year Lapse and (iii) 2-Year Lapse. A portion of the ND-Iris-Template-Aging dataset [11] is used with a period of three years lapse. Results show that the performance of the hybrid classifier AHyBrK [17] is improved as compared to KNN and ANN and the effect of aging in terms of degraded performance is clear. The performance of this system is measured in terms of False Rejection Rate, Error Rate, and Accuracy. The overall performance of AHyBrK is 51.04% and 52.98% better than KNN and ANN respectively in terms of False Rejection Rate and Error Rate whereas the accuracy of this proposed system is also improved by 5.52% and 6.04% as compared to KNN and ANN respectively. This proposed system also achieved high accuracy for all the test phases.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3