The Prediction of Application for Loan using Machine Learning Technique

Author:

Abstract

Machine learning techniques are used to verify the many kinds of loan prediction problems. This study pursueS two major goals. Firstly, this paper is to understand the role of variables in loan prediction modeling better. Secondly, the study evaluates the predictive performance of the decision trees. The corresponding variable information is drawn from a third-party website, international challenge on the popular internet platform Kaggle (www.kaggle.com), which provides data in the title of ‘Loan Prediction’ that was uploaded by Amit Parajapet. We used decision tree which is a powerful and popular machine learning algorithm to this date for predicting and classifying big data. Based on these results, first, women seem to be more likely to get to loan than men. credit history, self-employed, property area, and applicant income also show significance with loan prediction. This study contributes to the literature regarding loan prediction by providing a global model summarizing the loan prediction determinants of customers’ factors.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3