Abstract
The process of discovering and analyzing the customer feedback using Natural Language Processing (NLP) is said to be sentiment analysis. Based on the surge over the concept of rating level in sentiment analysis, sentiment is utilized as an attribute for certain aspects or features that get expressed and more attention are provided to the problem of detecting the customer reviews. Despite the wide use and popularity of some methods, a better technique for identifying the polarity of a text data is hard to find. Machine learning has recently attracted attention as an approach for sentiment analysis. This work extends the idea of evaluating the performance of various Machine Learning (ML) classifiers namely logistic regression, Naive Bayes, Support Vector Machine (SVM) and Neural Network (NN).To show their effectiveness in sentiment mining of customer product reviews, the customer feedback has been collected from Grocery and Gourmet Food. Nearly 90 thousands customers feedback reviews of various product related categories namely Product ID, rating, review test, review time reviewer ID and reviewer name are used in this analysis. The performance of the classifiers is measured in terms of accuracy, specificity and sensitivity. From the experimental results, the better machine learning classification algorithm is proposed for sentiment mining using online shopping customer review data.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. New Energy Vehicle Customer Mining Model Based on Machine Learning Algorithm;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26