Mosquito Larvae Detection using Deep Learning

Author:

Abstract

Dengue cases has become endemic in Malaysia. The cost of operation to exterminate mosquito habitats are also high. To do effective operation, information from community are crucial. But, without knowing the characteristic of Aedes larvae it is hard to recognize the larvae without guide from the expert. The use of deep learning in image classification and recognition is crucial to tackle this problem. The purpose of this project is to conduct a study of characteristics of Aedes larvae and determine the best convolutional neural network model in classifying the mosquito larvae. 3 performance evaluation vector which is accuracy, log-loss and AUC-ROC will be used to measure the model’s individual performance. Then performance category which consist of Accuracy Score, Loss Score, File Size Score and Training Time Score will be used to evaluate which model is the best to be implemented into web application or mobile application. From the score collected for each model, ResNet50 has proved to be the best model in classifying the mosquito larvae species.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3