EBASKET ECC Blended Authentication and Session Key Establishment Technique for IoT

Author:

Padmashree M G, ,Arunalatha J S,Venugopal K R, ,

Abstract

Security is a prerequisite of each device that provides physical access to anyone and is logically expose to communication network attacks. The Internet of Things (IoT) must assure energy-saving provision due to the unique characteristics of IoT devices that comprise cost-effective, low power, and data delivery capacity. A Key-based Authentication scheme is a need without creating a bottleneck of communication for security in IoT integration. Security solutions viz., Authentication, Access control, and Key management are essential for the protection of communication in IoT applications. Public Key Cryptography (PKC) encapsulates multiple security functionalities and applications in conventional networks. The proposed Elliptic Curve Cryptography (ECC) Blended Authentication and Session Key Establishment Technique (EBASKET), an enhanced HPAKE scheme secures the IoT device interactions using Hash and Public Key Cryptography conjoined with a Stochastic Number. EBASKET authenticates and establishes Session Key for communicating IoT Devices using ECC that enhances the security resisting Key Disclosure, Man-in-The-Middle (MiTM), Relay threats. It incorporates an Elliptic Curve of 256 bits to achieve the 128 bits security level. EBASKET accomplishes Key Establishment utilizes Nonce as the Fragmentary Key after authenticating the intercommunicating Devices. It decreases the overall delay incurred reducing the communication overhead minimizing the quantity and magnitude of the messages exchange for Authentication. A secure Key Establishment for the Session uses a Stochastic, Hashing function, and ECC. The interactions throughout the Predeploying, Authenticating, and Key Establishing process cause a delay. The performance graph depicts that Key Establishment and authenticating the IoT devices using ECC and reducing communicational cost enhance security than Enhanced, Hybrid, and Lightweight Authentication Schemes.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3