An IOT Method for Reducing Classification Error in Face Recognition With the Commuted Concept of Conventional Algorithm

Author:

Abstract

The initial work has discussed the conventional approach of algorithms along with their drawbacks and features. Apart from that types of face recognition methodologies have been discussed with application of IOT trends. We specifically depicts a descriptive idea about working and applications of all conventional algorithms which have been commuted concept wise in proposed methodologies section of our work Our work consists of literature survey so we can provide a reason for the previous work and get basic ground for performing and implementing proposed work. One of a common procedures of face detection has been discussed that’s has been worked out in past with accuracy .The observation in this work leads to propose the method by commuting the conventional algorithm, Basically the work done with conventional approach has been discussed in this section with a strong focus over the role of Iot in face recognition and what is importance of Iot in this domain and what changes Iot concept has bring about as far as face recognition with different approach has been concerned . Not only PCA concept has been commuted but along with Pca, Svm, naïve bayes classifier, DCT, Gabor, neural network efficiency and their combined effect has been performed and analyzed later. Our work has been focusing around commuted concept of conventional algorithms so this particular chapter is very much important to discuss the conventional methodologies perform by classical mathematically implemented techniques for classifications. With the help of the analysis we will discuss the problem formulation and comparison of proposed work with existing work .So our work is basically about the problem existing with conventional algorithm for classifications and what lead us to propose the commuted concept further to deal or minimize the effect of that particular problem ,Our work is not primarily based on face recognition but to calculate the classification error through conventional algorithm and then compare it with our proposed commuted concept and combined effect of conventional algorithms as well, like PCA+SVM PCA+ Kernel SVM, Commuted Concept of PCA +Naïve bayes Classifier .We have gone through with different cases to ensure the minimization of classification error through proposed method .The goal of the work is to associate the application of

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Cat Swarm Search-Based Deep Ensemble Learning Model for Group Recommender Systems;Journal of Information & Knowledge Management;2022-05-18

2. Emotional Classification Using EEG Signals and Facial Expression: A Survey;Deep Learning Approaches to Cloud Security;2021-12-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3