Energy Audit System for Households using Machine Learning

Author:

A. Nagesh*1

Affiliation:

1. Computer Science & Engineering, Mahatma Gandhi Institute of Technology Hyderabad (Telangana), India.

Abstract

the growth in population and economics the global demand for energy is increased considerably. The large amount of energy demand comes from houses. Because of this the energy efficiency in houses in considered most important aspect towards the global sustainability. The machine learning algorithms contributed heavily in predicting the amount of energy consumed in household level. In this paper, a energy audit system using machine learning are developed to estimate the amount of energy consumed at household level in order to identify probable areas to plug wastage of energy in household. Each energy audit system is trained using one machine leaning algorithm with previous power consumption history of training data. By converting this data into knowledge, gratification of analysis of energy consumption is attained. The performance of energy audit Linear Regression system is 82%, Decision Tree system is 86% and Random Forest 91% are predicted energy consumption and the performance of learning methods were evaluated based on the heir predictive accuracy, ease of learning and user friendly characteristics. The Random Forest energy audit system is superior when compare to other energy audit system.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3