A Joint Framework of GFP-GAN and Real-ESRGAN for Real-World Image Restoration

Author:

,Hasan MousumiORCID,Nishat Nusrat Jahan, ,Rahman Tanjina, ,Shaima Mujiba, ,Mosaher Quazi Saad ul, ,Alam Mohd. Eftay Khyrul,

Abstract

In the current era of digitalization, the restoration of old photos holds profound significance as it allows us to preserve and revive cherished memories. However, the limitations imposed by various websites offering photo restoration services prompted our research endeavor in the field of image restoration. Our motive originated from the personal desire to restore old photos, which often face constraints and restrictions on existing platforms. As individuals, we often encounter old and faded photographs that require restoration to revive the emotions and moments captured within them. The limits of existing photo restoration services prompted us to conduct this research, with the ultimate goal of contributing to the field of image restoration. To address this issue, we propose a joint framework that combines the Real-ESRGAN and GFP-GAN methods. Our recommended joint structure has been thoroughly tested on a broad range of severely degraded image datasets, and it has shown its efficiency in preserving fine details, recovering colors, and reducing artifacts. The research not only addresses the personal motive for restoring old photos but also has wider applications in preserving memories, cultural artifacts, and historical records through an effective and adaptable solution. Our deep learning-based approach, which leverages the synergistic capabilities of Real-ESRGAN and GFP-GAN, holds immense potential for revitalizing images that have suffered from severe degradation. This proposed framework opens up new avenues for restoring the visual integrity of invaluable historical images, thereby preserving precious memories for generations to come.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3