CLDC: Efficient Classification of Medical Data Using Class Level Disease Convergence Divergence Measure

Author:

Abstract

The problem of medical data classification is analyzed and the methods of classification are reviewed in various aspects. However, the efficiency of classification algorithms is still under question. With the motivation to leverage the classification performance, a Class Level disease Convergence and Divergence (CLDC) measure based algorithm is presented in this paper. For any dimension of medical data, it convergence or divergence indicates the support for the disease class. Initially, the data set has been preprocessed to remove the noisy data points. Further, the method estimates disease convergence/divergence measure on different dimensions. The convergence measure is computed based on the frequency of dimensional match where the divergence is estimated based on the dimensional match of other classes. Based on the measures a disease support factor is estimated. The value of disease support has been used to classify the data point and improves the classification performance.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Learning Framework for Detecting Underwater Trash;2024 International Conference on Computing and Data Science (ICCDS);2024-04-26

2. Transformative Weather Insights through AR Technology;2024 International Conference on Computing and Data Science (ICCDS);2024-04-26

3. Precision MRI Brain Tumor Identification: Leveraging Advanced Techniques for Accurate Classification;2024 International Conference on Computing and Data Science (ICCDS);2024-04-26

4. Enhancing the Education Ecosystem for Specially Abled Students;2024 International Conference on Computing and Data Science (ICCDS);2024-04-26

5. Machine Learning-Enabled Healthcare Decision Support System: An Advanced Disease Prediction with Patient-Doctor Collaboration;2024 International Conference on Computing and Data Science (ICCDS);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3