Adaptive Hyperparameter for Face Recognition

Author:

NGUYEN Thanh-Tam1,LE Son-Thai2,LE Van-Thuy3

Affiliation:

1. Faculty of Multimedia, The Posts and Telecommunications Institute of Technologies, Hanoi, Vietnam

2. Department of Multimedia Communications, The School of Information and Communication Technology - Thai Nguyen University, Thai Nguyen, Vietnam.

3. the School of Foreign Languages - Thai Nguyen University, Thai Nguyen, Vietnam

Abstract

One of the widely used prominent biometric techniques for identity authentication is Face Recognition. It plays an essential role in many areas, such as daily life, public security, finance, the military, and the smart school. The facial recognition task is identifying or verifying the identity of a person base on their face. The first step is face detection, which detects and locates human faces in images and videos. The face match process then finds an identity of the detected face. In recent years there have been many face recognition systems improving the performance based on deep learning models. Deep learning learns representations of the face based on multiple processing layers with multiple levels of feature extraction. This approach has made sufficient improvement in face recognition since 2014, launched by the breakthroughs of DeepFace and DeepID. However, finding a way to choose the best hyperparameters remains an open question. In this paper, we introduce a method for adaptive hyperparameters selection to improve recognition accuracy. The proposed method achieves improvements on three datasets.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Face expression image detection and recognition based on big data technology;International Journal of Intelligent Networks;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3