Derma Net: An Automated Skin Lesion Analyzer using CNN with Adaptive Learning
-
Published:2019-07-26
Issue:6S4
Volume:8
Page:513-515
-
ISSN:2278-3075
-
Container-title:International Journal of Innovative Technology and Exploring Engineering
-
language:en
-
Short-container-title:IJITEE
Abstract
In this paper we are going to develop an automated skin lesion analyzer that can take affected skin lesion image from user and predict or approximate 3 skin diseases with 95% accuracy. To accomplish this goal we are going to use Neural Networks as they are the best data driven models with top most accuracy in all the fields they have been experimented till now. Since Neural Network models also need huge computation power to train the model on the input data and also to predict the output we are going to use a computationally less intensive architecture that can work even on hand held mobiles and embedded systems. To further featuring our model we have added dropout techniques for model regularization and adaptive learning rates to achieve global minima with ease even with the presence of plateaus. At last we will deploy a production level web application to serve users across the world
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AN ERYTHEMATO SQUAMOUS DISEASE (ESD) DETECTION USING DBN TECHNIQUE;2022 International Conference on Communication, Computing and Internet of Things (IC3IoT);2022-03-10