Supervised Machine Learning for Training a Neural Network as 5:2 Compressor

Author:

Abstract

Machine Learning has achieved substantial development in numerous applications like image processing, pattern recognition, approximate computing etc. This paper interlinks supervised machine learning algorithm and VLSI architectures to train a neural network as exact and approximate 5:2 compressors. Probabilistic pruning type of approximation technique has been employed on the exact 5:2 compressor. This approximation technique on compressors reduces the power consumption with variation in the outputs without affecting the error limit. The simulation of 5:2 compressors and training of neural network using machine learning algorithm has been done using Spectre simulator of Cadence Design Systems at 45nm CMOS technology node and Keras library with TensorFlow background respectively.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation and Investigation of an Optimal Full Adder Design for Low Power and Reduced Delay Conditions;Wireless Personal Communications;2022-06-23

2. Tunnel Based Intra Network Controller Using NGROK Framework For Smart Cities;2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2021-12-02

3. Evaluation of Machine Learning Algorithms for Detection of Malicious Traffic in SCADA Network;Journal of Electrical Engineering & Technology;2021-10-25

4. Binary Flower Pollination (BFP) Approach to Handle the Dynamic Networking Conditions to Deliver Uninterrupted Connectivity;Wireless Personal Communications;2021-08-23

5. Facial Expression Recognition Using KERAS;Journal of Physics: Conference Series;2021-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3