Zero-Shot Learning to Detect Object Instances from Unknown Image Sources

Author:

Abstract

Inspired by the human capability, zero-shot learning research has been approaches to detect object instances from unknown sources. Human brains are capable of making decisions for any unknown object from a given attributes. They can make relation between the unknown and unseen object just by having the description of them. If human brain is given enough attributes, they can assess about the object. Zero-shot learning aims to reach this capability of human brain. First, we consider a machine to detect unknown object with training examples. Zero-shot learning approaches to do this type of object detection where there are no training examples. Through the process, a machine can detect object instances from images without any training examples. In this paper, we develop a dynamic system which will be able to detect object instances from an image that it never seen before. Which means during the testing process the test image will completely unknown from trained images. The system will be able to detect completely unseen objects from some bounded region of given images using zero shot learning approach. We approach to detect object instances from unknown class, because there are lots of growing category in the world and the new categories are always emerging. It is not possible to limit objects in this fast-forwarding world. Again, collecting, annotating and training each category is impossible. So, zero-shot learning will reduce the complexity to detect unknown objects.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a ROUV to Guide in Narrow Lanes;2024 International Telecommunications Conference (ITC-Egypt);2024-07-22

2. Analysis of image texture features and database of drama art pattern design based on speech recognition;International Journal of System Assurance Engineering and Management;2023-08-23

3. Tech-Care: A High-Tech Eye-Controlled Wheelchair for Paralyzed Patients;2023 International Telecommunications Conference (ITC-Egypt);2023-07-18

4. Fake Profile Detection Using Machine Learning;International Journal of Scientific Research in Science, Engineering and Technology;2023-04-10

5. Handwritten Character Recognition from Image Using CNN;Micro-Electronics and Telecommunication Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3