A Machine Learning Based Email Spam Classification Framework Model: Related Challenges and Issues

Author:

Abstract

Spam emails, also known as non-self, are unsolicited commercial emails or fraudulent emails sent to a particular individual or company, or to a group of individuals. Machine learning algorithms in the area of spam filtering is commonly used. There has been a lot of effort to render spam filtering more efficient in classifying e-mails as either ham (valid messages) or spam (unwanted messages) through the ML classifiers. We may recognize the distinguishing features of the material of documents. Much important work has been carried out in the area of spam filtering which cannot be adapted to various conditions and problems which are limited to certain domains. Our analysis contrasts the positives methods as well as some shortcomings of current ML methods and open spam filters study challenges. We suggest some of the new ongoing approaches towards deep leaning as potential tactics that can tackle the challenge of spam emails efficiently.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diverse ensemble classifier driven Email spam classification using multiple word embedding’s with COCOB optimizer;Journal of Intelligent & Fuzzy Systems;2024-01-10

2. Image Spam detection in E-mails using Grasshoppers optimization technique;2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3);2023-06-08

3. Hybrid Model for Email Spam Prediction Using Random Forest for Feature Extraction;2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1);2023-04-21

4. Voting Classification Method for Email Spam Prediction;2022 IEEE 6th Conference on Information and Communication Technology (CICT);2022-11-18

5. A Novel Fuzzy-Logic-Based Multi-Criteria Metric for Performance Evaluation of Spam Email Detection Algorithms;Applied Sciences;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3