Process Parameters Optimization of Aa2024 Alloy Friction Stir Welding using Taguchi’s Technique

Author:

Abstract

Within this research study, Taguchi system of style of experimental was utilized to assess the impact of some welding process parameters of sound state welding techniques like rotational speed(spinning velocity), travel speed in addition to pin profile on Tensile Strength (UTS), microhardness in addition to effect strength of Friction Stir Welded (FSW) 2024 light weight aluminum alloy joint. An orthogonal array of L9 design was actually employed for experimental trials and also Signal to noise proportion( S/N) values for each process specifications was computed. Based upon the S/N review the optimal level of process specifications was actually decided on as 1120 revoltions per minute, 25 mm/min and also Cylinder pin with Flutes( CWF) for best Tensile Strength and also micro Hardness. The ideal degree of process parameters for Impact toughness was actually pinpointed as 1120rpm,31.5 mm/min and also Tapered Cylindrical pin account( Drawback). Depending on to Analysis of variance (ANOVA), it was seen that the task of spinning, travel velocity and also pin geometry was 37.31, 64.84 and 1.13 per-cent effect on Ultimate tensile strength, 34.16, 51.28 and 0.58 per-cent impact on micro Hardness as well as 50.10, 43.7 and 6.2 percent influence on Influence Toughness of joint respectively. Eventually based upon FSW guidelines a model was actually created for tensile strength, Micro Hardness and Toughness values. The results were confirmed by further experiments, which yield the experimented values as 349.83 MPa for tensile strength, 114.26 Hardness and 7.8kJ Impact strength.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3