A Recapitulation of Imbalanced Data

Author:

Abstract

In today’s authentic universe almost all applications are imbalanced. Data imbalance is growing faster than ever before as many systems are interested in extracting knowledge from lake of data. Imbalance issue occurs because required data is very rare and using that rare data if classification is done we may lead to inaccurate result. In few sensitive imbalance cases like medical and finance if classification is done health and wealth both will get a huge lost. It is observed that big data and imbalance issue are having hand in hand relationship. So, imbalance data is gaining much importance in data science. It is predicted that by the year 2020, about 1.7MB of lake of information will be created every second by each device due to development in science and technology. Almost this lake of information generated will be imbalanced. So, in this paper we will define big data and imbalanced data, how there are related to each other, some of the reasons why imbalance data problems are occurring, various areas where imbalance issues is been effecting, current four machine learning methods for imbalanced data (Data based method, Algorithm based method, Cost sensitive method and ensemble methods), overall performance evaluation of imbalance methods are done using a comparison chart and interpreting achievements of imbalanced data using confusion matrix, Combined evaluation measures (G-means, F-Measure, Balanced Accuracy, Youden Index and Matthews’s correlation coefficient) and Graphical performance evaluation using Receiver operating characteristic (ROC) curve and Area under the curve (AUC) and lastly, considering of result of various imbalance methods.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An integrated text-based hybrid RNN-CNN model for toxic comment classification;SIXTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3