Abstract
Agriculture is one of the oldest economic aspects of human civilisation, and it is still undergoing a dynamic makeover in the course of the application of IT innovative mechanisms in farming methodology. Remote sensing has vied a significant role in crop classification, crop health and yield assessment. Multispectral remote sensing plays a vital role in providing enhancement of more detailed analysis of crop segmentation. In this article, pixel-based clustering of 12 channels is carried out using the satellite image from Sentinel 2 remote sensing satellite via k-means clustering. K-means clustering algorithm is usually a better method of classifying high-resolution satellite imagery. The extracted regions are classified using a minimum distance decision rule.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献