Big Data Architectures: A Detailed and Application Oriented Analysis

Author:

Abstract

Big Data refers to huge amounts of heterogeneous data from both traditional and new sources, growing at a higher rate than ever. Due to their high heterogeneity, it is a challenge to build systems to centrally process and analyze efficiently such data which are internal and external to organizations. A Big data architecture describes the blueprint of a system handling massive volume of data during its storage, processing, analysis and visualization. Several architectures belonging to different categories have been proposed by academia and industry but the field is still lacking benchmarks. Therefore, a detailed analysis of the characteristics of the existing architectures is required in order to ease the choice between architectures for specific use cases or industry requirements. The types of data sources, the hardware requirements, the maximum tolerable latency, the fitment to industry, the amount of data to be handled are some of the factors that need to be considered carefully before making the choice of an architecture of a Big Data system. However, the wrong choice of architecture can result in huge decline for a company reputation and business. This paper reviews the most prominent existing Big Data architectures, their advantages and shortcomings, their hardware requirements, their open source and proprietary software requirements and some of their realworld use cases catering to each industry. The purpose of this body of work is to equip Big Data architects with the necessary resources to make better informed choices to design optimal Big Data systems.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Architecture and Algorithm Design for Civil Aviation Data Real-Time Analysis System;IEEE Access;2024

2. Examining the Trend of Research on Big Data Architecture: Bibliometric Analysis using Scopus Database;Procedia Computer Science;2024

3. Big Data Architectures and Concepts;Journal of Innovation Information Technology and Application (JINITA);2023-12-29

4. A Model of Big Data Architecture on the Base of FIWARE Components;Proceedings of the Bulgarian Academy of Sciences;2023-10-01

5. Scalable recommendation systems based on finding similar items and sequences;Concurrency and Computation: Practice and Experience;2022-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3