CAD System for Lung Cancer and its Stages Detection using Image Processing Techniques

Author:

Abstract

The Lung Cancer is a most common cancer which causes of death to people. Early detection of this cancer will increase the survival rate. Usually, cancer detection is done manually by radiologists that had resulted in high rate of False Positive (FP) and False Negative (FN) test results. Currently Computed Tomography (CT) scan is used to scan the lung, which is much efficient than X-ray. In this proposed system a Computer Aided Detection (CADe) system for detecting lung cancer is used. This proposed system uses various image processing techniques to detect the lung cancer and also to classify the stages of lung cancer. Thus the rates of human errors are reduced in this system. As the result, the rate of obtaining False positive and (FP) False Negative (FN) has reduced. In this system, MATLAB have been used to process the image. Region growing algorithm is used to segment the ROI (Region of Interest). The SVM (Support Vector Machine) classifier is used to detect lung cancer and to identify the stages of lung cancer for the segmented ROI region. This proposed system produced 98.5 % accuracy when compared to other existing system

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Modelling of VGG-16 Architecture for Lung Tumor Detection;2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3