Abstract
We have tried to automate the classification task of white blood cells by using a Convolutional Neural Network. We have divided white blood cell classification in two types of problems, a binary class problem and a 4-classification problem. In binary class problem we classify white blood cell as either mononuclear or Grenrecules. In 4-classification problem where cells are classified into their subtypes (monocytes, lymphocytes, neutrophils, basophils and eosinophils). In our experiment we were able to achieve validation accuracy of 100% in binary classification and 98.40 in multiple classifications.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献