Abstract
Education could be a important resource that has to lean to all or any kids. one in all the largest assets of the longer term generation cloud is alleged because the education that's given to the youngsters. Most of the youngsters aren't ready to continue their education because of many reasons. The prediction of student dropout plays a very important role in characteristic the scholars World Health Organization are on the sting of being a dropout from their education. whereas predicting this, we will simply try and solve their issues and create them continue their education. during this paper, we've planned a model for predicting the scholars can get born out or not mistreatment many machine learning techniques. we have a tendency to create use of decision trees that make a call mistreatment many factors. the choice of the prediction involves crucial wherever many knowledge attributes are used for prediction like correlations, similarity measures, frequent patterns, and associations rule mining. The planned work is evaluated mistreatment numerous parameters and is well-tried to figure expeditiously in predicting the dropout students compared with alternative.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献