Abstract
Cloud computing, one of the fastest growing fields, is the the delivery of computing resources and services. Load balancing is a key problem in cloud computing (CC) that deals with the even distribution of work load across multiple virtual machines to ensure that no machine is overloaded or underutilized during the task computation. The load balancing optimization problem is an NP-hard problem, hence, for the optimal usage of available resources, we propose a new efficient user-priority multi-agent genetic algorithm (GA). Our algorithm takes the “users’ priority and earliest job finishing time” into consideration for minimizing the response time and energy. We simulate our algorithm using Cloud-Analyst and show that our algorithm outperforms the existing algorithms for load balancing.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献