Classification of Musical Instruments using SVM and KNN

Author:

Abstract

Automatic classification of musical instruments is a challenging task. Music data classification has become a very popular research in the digital world. Classification of the musical instruments required a huge manual process. This system classifies the musical instruments from a several acoustic features that includes MFCC, Sonogram and MFCC combined with Sonogram. SVM and kNN are two modeling techniques used to classify the features. In this paper, to simply musical instruments classifications based on its features which are extracted from various instruments using recent algorithms. The proposed work compares the performance of kNN with SVM. Identifying the musical instruments and computing its accuracy is performed with the help of SVM and kNN classifier, using the combination of MFCC and Sonogram with SVM a high accuracy rate of 98% achieve in classifying musical instruments. The system tested sixteen musical instruments to find out the accuracy level using SVM and kNN

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3