A Pinnacle Technique for Detection of COVID-19 Fake News in Social Media

Author:

Abstract

Today the world is gripped with fear of the most infectious disease which was caused by a newly discovered virus namely corona and thus termed as COVID-19. This is a large group of viruses which severely affects humans. The world bears testimony to its contagious nature and rapidity of spreading the illness. 50l people got infected and 30l people died due to this pandemic all around the world. This made a wide impact for people to fear the epidemic around them. The death rate of male is more compared to female. This Pandemic news has caught the attention of the world and gained its momentum in almost all the media platforms. There was an array of creating and spreading of true as well as fake news about COVID-19 in the social media, which has become popular and a major concern to the general public who access it. Spreading such hot news in social media has become a new trend in acquiring familiarity and fan base. At the time it is undeniable that spreading of such fake news in and around creates lots of confusion and fear to the public. To stop all such rumors detection of fake news has become utmost important. To effectively detect the fake news in social media the emerging machine learning classification algorithms can be an appropriate method to frame the model. In the context of the COVID-19 pandemic, we investigated and implemented by collecting the training data and trained a machine learning model by using various machine learning algorithms to automatically detect the fake news about the Corona Virus. The machine learning algorithm used in this investigation is Naïve Bayes classifier and Random forest classification algorithm for the best results. A separate model for each classifier is created after the data preparation and feature extraction Techniques. The results obtained are compared and examined accurately to evaluate the accurate model. Our experiments on a benchmark dataset with random forest classification model showed a promising results with an overall accuracy of 94.06%. This experimental evaluation will prevent the general public to keep themselves out of their fear and to know and understand the impact of fast-spreading as well as misleading fake news.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3