Impact of Channel Geometries and Flow Patterns On Micro-Channel Heat Sink Performance
-
Published:2019-09-10
Issue:11
Volume:8
Page:331-336
-
ISSN:2278-3075
-
Container-title:International Journal of Innovative Technology and Exploring Engineering
-
language:en
-
Short-container-title:IJITEE
Abstract
Demand for greater capability of electronic devices in very small volume for compactness has affected huge augmentations in heat indulgence at all stages of device, electronic wrapping, test section and system. Latest cooling systems are hence needed to eliminate the released heat while maintaining compactness of the device. The micro-channel heat sink (MCHS) is ideal for this situation as it consists of channels of micron size which offers an extended surface area to volume ratio of approximately 15.294 m2 / m3 compared to 650 m2 / m3 for a typical heat compact exchanger. A comprehensive review has been done for consequence of heat flux (qo ), mass flux (G), vapour quality (x) and channel geometries at flow patterns and heat dissipation of MCHS. The study show that to increase the rate of heat transfer by using different channel geometries like converging-diverging, segmented etc. compared to conventional rectangular micro-channels has given better cooling effect The Flow patterns like bubbly, slug flow are associated with nucleate boiling dominated in low vapour quality and annular flow also given the significant effect on heat transfer in higher vapour quality region
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献