Intrusion Detection in Manet Through Machine Learning Approach

Author:

SJ Dr. Sultanuddin, ,Hussain Dr. Md. Ali,

Abstract

Mobile ad hoc networks (MANETs) have evolved into a leading multi-hop infrastructure less wireless communication technology where every node performs the function of a router. Ad- hoc networks have been spontaneously and specifically designed for the nodes to communicate with each other in locations where it is either complex or impractical to set up an infrastructure. The overwhelming truth is that with IoT emergence, the number of devices being connected every single second keeps increasing tremendously on account of factors like scalability, cost factor and scalability which are beneficial to several sectors like education, disaster management, healthcare, espionage etc., where the identification and allocation of resources as well as services is a major constraint. Nevertheless, this infrastructure with dynamic mobile nodes makes it more susceptible to diverse attack scenarios especially in critical circumstances like combat zone communications where security is inevitable and vulnerabilities in the MANET could be an ideal choice to breach the security. Therefore, it is crucial to select a robust and reliable system that could filter malicious activities and safeguard the network. Network topology and mobility constraints poses difficulty in identifying malicious nodes that can infuse false routes or packets could be lost due to certain attacks like black hole or worm hole. Hence our objective is to propose a security solution to above mentioned issue through ML based anomaly detection and which detects and isolates the attacks in MANETs. Most of the existing technologies detect the anomalies by utilizing static behavior; this may not prove effective as MANET portrays dynamic behavior. Machine learning in MANETs helps in constructing an analytical model for predicting security threats that could pose enormous challenges in future. Machine learning techniques through its statistical and logical methods offers MANETs the learning potential and encourages towards adaptation to different environments. The major objective of our study is to identify the intricate patterns and construct a secure mobile ad-hoc network by focusing on security aspects by identifying malicious nodes and mitigate attacks. Simulation-oriented results establish that the proposed technique has better PDR and EED in comparison to the other existing techniques.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multilayer Statistical Intrusion Detection Model for Wireless Network;2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon);2022-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3