Estimate Reliability Parameters in Bio_Fuel Plant Using Neural Network Architecture

Author:

Abstract

The world’s ever increasing demand for energy and abating global warming, suitable renewable sources of energy are highly in demand. The wastes from industries such as plant’s biomass could meet the energy requirements. In this paper authors analyze bio fuel plant system which produces ethanol fuel. This system is divided into various subsystems considering multiple phases in the production of ethanol. The structure of this system consists of interconnected networks of components on very large dimensional scales escalates the complexity of systems that can increase the degradation of system's functioning. In view of this, one of the computational intelligence approach, neural network (NN), is useful in predicting various reliability parameters. To improve the accuracy and consistency of parameters, Feed Forward Back Propagation Neural Network (FFBPNN) is used. All types of failures and repairs follow exponential distributions. System state probabilities and other parameters are developed for the proposed model using neural network approach. Failures and repairs are treated as neural weights. Neural network's learning mechanism can modify the weights due to which these parameters yield optimal values. Numerical examples are included to demonstrate the results. The iterations are repeated till the convergence in the error tends up to 0.0001 precision using MATLAB code. The reliability and cost analysis of the system can help operational managers in taking the decision to implement it in the real time systems

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical Modeling and Availability Analysis of Leaf Spring Manufacturing Plant;Pertanika Journal of Science and Technology;2021-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3