Genetic Algorithm-Based Optimization of Friction Stir Welding Process Parameters on Aa7108

Author:

Patel Maulikkumar B.1,Dave Komal G.2

Affiliation:

1. Department of Mechanical Engineering, Gujarat Technological University, Ahmedabad (Gujarat), India.

2. Department of Mechanical Engineering, Lalbhai Dalpatbhai College of Engineering, Ahmedabad (Gujarat), India.

Abstract

This research paper deals with the characterization of friction stir welding aluminium 7108 with twin stir technology. The coupons of the above metal were friction stir welded using a cylindrical pin with counter-rotating twin stir technology using at constant speed 900, 1200, 1500,1800 with four different feed rates of 30,50,70,90 mm/min. Microstructure examination showed the variation of each zone and their influence on the mechanical properties. Also, tensile strength and hardness measurements were done as a part of the mechanical characterization and correlation between mechanical and metallurgical properties and deduced at the speed of 1500 rpm. Friction stir welding process parameters such as tool rotational speed (rpm), tool feed (mm/min) were considered to find their influence on the tensile strength (MPa) and hardness (HRB). A genetic algorithm (GA) was employed by taking the fitness function as a combined objective function to optimize the friction welding process parameters to predict the maximum value of the tensile strength and hardness. The confirmation test also revealed good closeness to the genetic algorithm predicted results and the optimized value of process parameters for different weights of the tensile and hardness have been predicted in the model.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3