Healthy Fruits Image Label Categorization through Color Shape and Texture Features Based on Machine Learning Algorithm

Author:

Abstract

The fruit categorization according to their visual quality has recently experienced tremendous growth in the field of agriculture and food products. Due to post-harvest loses during handling and processing, there is an increasing demand for quality products in agro industry which requires accuracy to predict the fruit. Various techniques of machine learning have been successfully applied for classifying the fruit built on binary class. In this paper, machine leaning technique is used to automate the process of categorization and to improve the accuracy of different types of fruits by feature selection. To categorized images domain specific features such as color, shape and textual features are considered. Statistical color features are extracted from the image, bounding box feature for shape features and gray-level co-occurrence matrix (GLCM) is used to extract the textual feature of an image. These features are combined in a single feature fusion. A support vector machine (SVM) classification model is trained using training set features on fruit360 dataset which includes six fruit categories (classes) with two sub category (sub-classes) which builds multiclass classification task. We present one-vs-one coding design of Error correcting output codes (ECOC) and apply to SVM classifier; validation followed a fivefold cross validation strategy. The result shows that the textual features combined with color and shape feature improved fruit classification accuracy.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3