Automatic Speaker Identification by Voice Based on Vector Quantization Method

Author:

Abstract

In this paper, the systems of speaker identification of a text-dependent and independent nature were considered. Feature extraction was performed using chalk-frequency cepstral coefficients (MFCC). The vector quantization method for the automatic identification of a person by voice has been investigated. Using the extracted features, the code book from each speaker was built by clustering the feature vectors. Speakers were modeled using vector quantization (VQ). Using the extracted features, the code book from each speaker was built by clustering the feature vectors. Codebooks of all announcers were collected in the database. From the results, it can be said that vector quantization using cepstral features produces good results for creating a voice recognition system.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approaches to Solving Problems of Markov Modeling Training in Speech Recognition;Lecture Notes in Networks and Systems;2024

2. Formation of a Speech Database in the Karakalpak Language for Speech Synthesis Systems;Lecture Notes in Networks and Systems;2024

3. Automatic Speech Recognition on the Neutral Network Based on Attention Mechanism;Intelligent Human Computer Interaction;2023

4. Methods for determining speech activity of uzbek speech in recognition systems;PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: (PTLICISIWS-2022);2023

5. Construction of Language Models for Uzbek Language;2022 International Conference on Information Science and Communications Technologies (ICISCT);2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3