A Scalable Business Intelligence Decision-Making System in the Era of Big Data

Author:

Abstract

Transformation presents the second step in the ETL process that is responsible for extracting, transforming and loading data into a data warehouse. The role of transformation is to set up several operations to clean, to format and to unify types and data coming from multiple and different data sources. The goal is to get data to conform to the schema of the data warehouse to avoid any ambiguity problems during the data storage and analytical operations. Transforming data coming from structured, semi-structured and unstructured data sources need two levels of treatments: the first one is transformation schema to schema to get a unified schema for all selected data sources and the second treatment is transformation data to data to unify all types and data gathered. To ensure the setting up of these steps we propose in this paper a process switch from one database schema to another as a part of transformation schema to schema, and a meta-model based on MDA approach to describe the main operations of transformation data to data. The results of our transformations propose a data loading in one of the four schemas of NoSQL to best meet the constraints and requirements of Big Data.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised Learning for Land Cover Mapping of Casablanca Using Multispectral Imaging;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28

2. An overview of GeoSpatial Artificial Intelligence technologies for city planning and development;2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT);2023-02-22

3. Machine learning for satellite image classification: A comprehensive review;2022 International Conference on Data Analytics for Business and Industry (ICDABI);2022-10-25

4. Spatial Data Mining technology for GIS: a review;2022 International Conference on Data Analytics for Business and Industry (ICDABI);2022-10-25

5. Satellite data analysis and geographic information system for urban planning: A systematic review;2022 International Conference on Data Analytics for Business and Industry (ICDABI);2022-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3