A Hybrid Fish – Bee Optimization Algorithm for Heart Disease Prediction using Multiple Kernel SVM Classifier

Author:

Abstract

The patient’s heart disease status is obtained by using a heart disease detection model. That is used for the medical experts. In order to predict the heart disease, the existing technique use optimal classifier. Even though the existing technique achieved the better result, it has some disadvantages. In order to improve those drawbacks, the suggested technique utilizes the effective method for heart disease prediction. At first the input information is preprocessed and then the preprocessed result is forwarded to the feature selection process. For the feature selection process a proficient feature selection is used over the high dimensional medical data. Hybrid Fish Bee optimization algorithm (HFSBEE) is utilized. Thus, the proposed algorithm parallelizes the two algorithms such that the local behavior of artificial bee colony algorithm and global search of fish swarm optimization are effectively used to find the optimal solution. Classification process is performed by the transformation of medical dataset to the Multi kernel support vector machine (MKSVM). The process of our proposed technique is calculated based on the accuracy, sensitivity, specificity, precision, recall and F-measure. Here, for test analysis, the some datasets used i.e. Cleveland, Hungarian and Switzerland etc., that are given based on the UCI machine learning repository. The experimental outcome show that our presented technique is went better than the accuracy of 97.68%. This is for the Cleveland dataset when related with existing hybrid kernel support vector machine (HKSVM) method achieved 96.03% and optimal rough fuzzy classifier obtained 62.25%. The implementation of the proposed method is done by MATLAB platform.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toxicity Tweet Detection and Classification Using NLP Driven Techniques;2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG);2023-12-08

2. A Survey on Deep Learning Model for Improved Disease Prediction with Multi Medical Data Sets;2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC);2022-08-17

3. Data mining concepts in healthcare with discussion on prediction of diseases;2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON);2022-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3