Ensemble Based Hybrid Recommender Systems
-
Published:2020-01-10
Issue:3
Volume:9
Page:826-833
-
ISSN:2278-3075
-
Container-title:International Journal of Innovative Technology and Exploring Engineering
-
language:en
-
Short-container-title:IJITEE
Abstract
In the past few years, the advent of computational and prediction technologies has spurred a lot of interest in recommendation research. Content-based recommendation and collaborative filtering are two elementary ways to build recommendation systems. In a content based recommender system, products are described using keywords and a user profile is developed to enlist the type of products the user may like. Widely used Collaborative filtering recommender systems provide recommendations based on similar user preferences. Hybrid recommender systems are a blend of content-based and collaborative techniques to harness their advantages to maximum. Although both these methods have their own advantages, they fail in ‘cold start’ situations where new users or products are introduced to the system, and the system fails to recommend new products as there is no usage history available for these products. In this work we work on MovieLens 100k dataset to recommend movies based on the user preferences. This paper proposes a weighted average method for combining predictions to improve the accuracy of hybrid models. We used standard error as a measure to assign the weights to the classifiers to approximate their participation in predicting the recommendations. The cold start problem is addressed by including demographic data of the user by using three approaches namely Latent Vector Method, Bayesian Weighted Average, and Nearest Neighbor Algorithm.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献