Ensemble Based Hybrid Recommender Systems

Author:

Abstract

In the past few years, the advent of computational and prediction technologies has spurred a lot of interest in recommendation research. Content-based recommendation and collaborative filtering are two elementary ways to build recommendation systems. In a content based recommender system, products are described using keywords and a user profile is developed to enlist the type of products the user may like. Widely used Collaborative filtering recommender systems provide recommendations based on similar user preferences. Hybrid recommender systems are a blend of content-based and collaborative techniques to harness their advantages to maximum. Although both these methods have their own advantages, they fail in ‘cold start’ situations where new users or products are introduced to the system, and the system fails to recommend new products as there is no usage history available for these products. In this work we work on MovieLens 100k dataset to recommend movies based on the user preferences. This paper proposes a weighted average method for combining predictions to improve the accuracy of hybrid models. We used standard error as a measure to assign the weights to the classifiers to approximate their participation in predicting the recommendations. The cold start problem is addressed by including demographic data of the user by using three approaches namely Latent Vector Method, Bayesian Weighted Average, and Nearest Neighbor Algorithm.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3