Abstract
Intrusion Detection System is a vital feature of protecting network infrastructure from unauthorized users or hackers. Intrusion detection system is used to identify several types of malicious activities that could effect the safety of network and to reduce network traffic. Because of faster growth of Internet, networks are growing rapidly in every area of society. As a result, large amount of data is travelling across many networks which may lead to vulnerability of integrity and confidentiality of data. Many Machine learning models are opened up providing new opportunity to classify traffic in network. In quest to select a good learning model, this paper illustrates performance between J48, Naive Bayes and Random forest classification models. The KDD Cup 99 dataset is used for experimental analysis to identify which classification model improves correctness of data and attains highest accuracy.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献