Prediction of Student Performance using Hybrid Classification

Author:

Abstract

Data mining technologies allow collection, storage and processing huge amounts of data and carrying a large variety of data types and samples. Predicting academic performance of student is the most successive research in this era. Previous research work researchers are used different classification algorithm to predict the student performance. There is lot of research work to be taken in the field of educational data mining and big data in education to increase the accuracy of the classification algorithm and predict the academic performance of student. In this research work we used hybrid classification algorithm for predicting the performance of students. Two Popular classification algorithms ID3 and J48 were applied on the data set. To make hybrid classification voting technique is applied using weka machine learning tool. In this work we tested how the hybrid algorithm accurately predicts the student data set. To check the predicted result classification accuracy was computed. This hybrid classification algorithm gives accuracy with 62.67%.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decision Support Model using FIM Sugeno for Assessing the Academic Performance;Advances in Science, Technology and Engineering Systems Journal;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3